179 research outputs found

    A subject-to-subject transfer learning framework based on Jensen-Shannon divergence for improving brain-computer interface

    Get PDF
    One of the major limitations of current electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is the long calibration time. Due to a high level of noise and non-stationarity inherent in EEG signals, a calibration model trained using limited number of train data may not yield an accurate BCI model. To address this problem, this paper proposes a novel subject-to-subject transfer learning framework that improves the classification accuracy using limited training data. The proposed framework consists of two steps: The first step identifies if the target subject will benefit from transfer learning using cross-validation on the few available subject-specific training data. If transfer learning is required a novel algorithm for measuring similarity, called the Jensen-Shannon ratio (JSR) compares the data of the target subject with the data sets from previous subjects. Subsequently, the previously calibrated BCI subject model with the highest similarity to the target subject is used as the BCI target model. Our experimental results using the proposed framework obtained an average accuracy of 77% using 40 subject-specific trials, outperforming the subject-specific BCI model by 3%

    Weighted transfer learning for improving motor imagery-based brain-computer interface

    Get PDF
    One of the major limitations of motor imagery (MI)-based brain-computer interface (BCI) is its long calibration time. Due to between sessions/subjects variations in the properties of brain signals, typically a large amount of training data needs to be collected at the beginning of each session to calibrate the parameters of the BCI system for the target user. In this paper, we propose a novel transfer learning approach on the classification domain to reduce the calibration time without sacrificing the classification accuracy of MI-BCI. Thus, when only few subject-specific trials are available for training, the estimation of the classification parameters is improved by incorporating previously recorded data from other users. For this purpose, a regularization parameter is added to the objective function of the classifier to make the classification parameters as close as possible to the classification parameters of the previous users who have feature spaces similar to that of the target subject. In this study, a new similarity measure based on the kullback leibler divergence (KL) is used to measure similarity between two feature spaces obtained using subject-specific common spatial patterns (CSP). The proposed transfer learning approach is applied on the logistic regression classifier and evaluated using three datasets. The results showed that compared to the subject-specific classifier, the proposed weighted transfer learning classifier improved the classification results particularly when few subject-specific trials were available for training (p<0.05). Importantly, this improvement was more pronounced for users with medium and poor accuracy. Moreover, the statistical results showed that the proposed weighted transfer learning classifier performed significantly better than the considered comparable baseline algorithms

    Data space adaptation for multiclass motor imagery-based BCI

    Get PDF
    Various adaptation techniques have been proposed to address the non-stationarity issue faced by electroencephalogram (EEG)-based brain-computer interfaces (BCIs). However, most of these adaptation techniques are only suitable for binary-class BCIs. This paper proposes a supervised multiclass data space adaptation technique (MDSA) to transform the test data using a linear transformation such that the distribution difference between the multiclass train and test data is minimized. The results of using the proposed MDSA on BCI Competition IV dataset 2a improved the classification accuracy by an average of 4.3\% when 20 trials per class were used from the test session to estimate adaptation transformation. The results also showed that the proposed MDSA algorithm outperformed the multi pooled mean linear discrimination (MPMLDA) technique with as few as 10 trials per class used for calculating the transformation matrix. Hence the results showed the effectiveness of the proposed MDSA algorithm in addressing non-stationarity issue for multiclass EEG-based BCI

    Identification of material properties of orthotropic composite plate using hybrid non-destructive evaluation approach

    Get PDF
    Identification of material properties is one of the key issues in composite materials research. The mechanical properties of composite materials depend on diverse factors such as configuration of the laminates, constituent materials used and production method adopted. Conventional testing approach tends to be time-consuming, expensive and destructive. As an alternative, a rapid, inexpensive, hybrid and non-destructive evaluation approach which utilises experimental modal analysis and finite element analysis is proposed. Experimental modal data which consist of natural frequencies and mode shapes of an orthotropic composite plate are utilised for correlation purpose with its finite element model. This finite element model of the composite plate is continuously updated and achieves less than 5% in difference of natural frequencies and over 70% in modal assurance criterion. Material properties such as Young's moduli, inplane shear modulus and Poisson ratio of the composite plate are then successfully determined using the well-correlated FE model

    Weighted transfer learning of dynamic time warped data for motor imagery based brain computer interfaces

    Get PDF
    A large amount of calibration data is typically needed to train an electroencephalogram (EEG)-based brain-computer interfaces (BCI) due to the non-stationary nature of EEG data. This paper proposes a novel weighted transfer learning algorithm using a dynamic time warping (DTW) based alignment method to alleviate this need by using data from other subjects. DTW-based alignment is first applied to reduce the temporal variations between a specific subject data and the transfer learning data from other subjects. Next, similarity is measured using Kullback Leibler divergence (KL) between the DTW aligned data and the specific subject data. The other subjects’ data are then weighted based on their KL similarity to each trials of the specific subject data. This weighted data from other subjects are then used to train the BCI model of the specific subject. An experiment was performed on publicly available BCI Competition IV dataset 2a. The proposed algorithm yielded an average improvement of 9% compared to a subject-specific BCI model trained with 4 trials, and the results yielded an average improvement of 10% compared to naive transfer learning. Overall, the proposed DTW-aligned KL weighted transfer learning algorithm show promise to alleviate the need of large amount of calibration data by using only a short calibration data

    A transfer learning algorithm to reduce brain-computer interface calibration time for long-term users

    Get PDF
    Current motor imagery-based brain-computer interface (BCI) systems require a long calibration time at the beginning of each session before they can be used with adequate levels of classification accuracy. In particular, this issue can be a significant burden for long term BCI users. This article proposes a novel transfer learning algorithm, called r-KLwDSA, to reduce the BCI calibration time for long-term users. The proposed r-KLwDSA algorithm aligns the user's EEG data collected in previous sessions to the few EEG trials collected in the current session, using a novel linear alignment method. Thereafter, the aligned EEG trials from the previous sessions and the few EEG trials from the current sessions are fused through a weighting mechanism before they are used for calibrating the BCI model. To validate the proposed algorithm, a large dataset containing the EEG data from 11 stroke patients, each performing 18 BCI sessions, was used. The proposed framework demonstrated a significant improvement in the classification accuracy, of over 4% compared to the session-specific algorithm, when there were as few as two trials per class available from the current session. The proposed algorithm was particularly successful in improving the BCI accuracy of the sessions that had initial session-specific accuracy below 60%, with an average improvement of around 10% in the accuracy, leading to more stroke patients having meaningful BCI rehabilitation

    Efficacy of brain-computer interface and the impact of its design characteristics on post-stroke upper-limb rehabilitation: a systematic review and meta-analysis of randomized controlled trials

    Get PDF
    Background. A number of recent randomized controlled trials reported the efficacy of brain–computer interface (BCI) for upper-limb stroke rehabilitation compared with other therapies. Despite the encouraging results reported, there is a significant variance in the reported outcomes. This paper aims to investigate the effectiveness of different BCI designs on poststroke upper-limb rehabilitation. Methods. The effect sizes of pooled and individual studies were assessed by computing Hedge’s g values with a 95% confidence interval. Subgroup analyses were also performed to examine the impact of different BCI designs on the treatment effect. Results. The study included 12 clinical trials involving 298 patients. The analysis showed that the BCI yielded significant superior short-term and long-term efficacy in improving the upper-limb motor function compared to the control therapies (Hedge’s g = 0.73 and 0.33, respectively). Based on our subgroup analyses, the BCI studies that used the intention of movement had a higher effect size compared to those used motor imagery (Hedge’s g = 1.21 and 0.55, respectively). The BCI studies using band power features had a significantly higher effect size than those using filter bank common spatial patterns features (Hedge’s g = 1.25 and − 0.23, respectively). Finally, the studies that used functional electrical stimulation as the BCI feedback had the highest effect size compared to other devices (Hedge’s g = 1.2). Conclusion. This meta-analysis confirmed the effectiveness of BCI for upper-limb rehabilitation. Our findings support the use of band power features, the intention of movement, and the functional electrical stimulation in future BCI designs for poststroke upper-limb rehabilitation

    Exploring the ability of stroke survivors in using the contralesional hemisphere to control a brain-computer interface

    Get PDF
    Brain-computer interfaces (BCIs) have recently been shown to be clinically effective as a novel method of stroke rehabilitation. In many BCI-based studies, the activation of the ipsilesional hemisphere was considered a key factor required for motor recovery after stroke. However, emerging evidence suggests that the contralesional hemisphere also plays a role in motor function rehabilitation. The objective of this study is to investigate the effectiveness of the BCI in detecting motor imagery of the affected hand from contralesional hemisphere. We analyzed a large EEG dataset from 136 stroke patients who performed motor imagery of their stroke-impaired hand. BCI features were extracted from channels covering either the ipsilesional, contralesional or bilateral hemisphere, and the offline BCI accuracy was computed using 10 × 10-fold cross-validations. Our results showed that most stroke patients can operate the BCI using either their contralesional or ipsilesional hemisphere. Those with the ipsilesional BCI accuracy of less than 60% had significantly higher motor impairments than those with the ipsilesional BCI accuracy above 80%. Interestingly, those with the ipsilesional BCI accuracy of less than 60% achieved a significantly higher contralesional BCI accuracy, whereas those with the ipsilesional BCI accuracy more than 80% had significantly poorer contralesional BCI accuracy. This study suggests that contralesional BCI may be a useful approach for those with a high motor impairment who cannot accurately generate signals from ipsilesional hemisphere to effectively operate BCI
    corecore